The Spread of Excitation among Neurons in the Heart Ganglion of the Stomatopod, Squilla oratoria

نویسندگان

  • Akira Watanabe
  • Kimihisa Takeda
چکیده

Neurons in the heart ganglion of the mantis shrimp (a stomatopod crustacean) are functionally tightly linked together. The extracellular action potential from the whole trunk very often shows a complex form, but the response is all-or-none to the applied stimulus, indicating that the excitation in one neuron spreads very rapidly to all others. Application of isotonic MgCl(2) solution or repetitive stimulation sometimes separates the spike into its components. The resting potential of the soma membrane is 50 to 60 mv. External stimulation elicits a spike of 60 to 80 mv amplitude with a step on its rising phase. Hyperpolarization reveals one more inflection on the rising phase. These inflections divide the soma action potential into three parts, A(1), A(2), and B spikes in that order from the foot. The B spike disappears on increasing the hyperpolarization, but A(1) and A(2) remain, indicating that B originates from the soma membrane, whereas A(1) and A(2) originate from the two axons of the bipolar cell. Thus the impulse invades the soma from two directions, one from the stimulated side, the other from the other side via the "parallel axons" and the "side-connections;" the latter are presumed to interconnect the axons. When the parallel axons are cut, conduction takes place across the soma with a greatly reduced safety factor and a prolonged conduction time. Neuron-to-neuron transmission takes place in either direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Properties of the Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria

In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potenti...

متن کامل

Pacemaker Potentials for the Periodic Burst Discharge in the Heart Ganglion of a Stomatopod, Squilla oratoria

From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow def...

متن کامل

Neuronal and neurohormonal control of the heart in the stomatopod crustacean, Squilla oratoria.

The heart of Squilla oratoria contains a cardiac ganglion that consists of 15 intrinsic neurons, supplied by a pair of inhibitory nerves and two pairs of excitatory nerves, arising from the central nervous system. These comprise the extrinsic cardiac innervation. The paired cardio-inhibitor (CI) nerves run out in the 10th pair of nerve roots emerging from the subesophageal ganglion (SEG). The c...

متن کامل

Electrophysiological Investigations of the Heart of Squill a Mantis

In most, possibly all, Crustacea the heart beat is neurogenic. Each beat is initiated by a burst of impulses from a small group of neurones whose cell bodies lie grouped in the ganglionic nerve trunk (g.n.t.) in the heart wall and whose axons run to the heart muscle. Many attempts have been made by electrophysiologists to discover how these neurones are integrated to fire rhythmic bursts (for e...

متن کامل

Acceleratory Synapses on Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria

The pacemaker neurons of the heart ganglion are innervated from the CNS through two pairs of acceleratory nerves. The effect of acceleratory nerve stimulation was examined with intracellular electrodes from the pacemaker cells. The major effects on the pacemaker potential were an increase in the rate of rise of the spontaneous depolarization and in the duration of the plateau. The aftereffect o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1963